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S U M M A R Y  
A new approach for the numericalintegration of the Navier-Stokes equations is presented. It is based on the perturbation 
of the Poisson type equation. The system of nonlinear partial differential equations obtained is solved by means of an 
explicit operator. Some results are presented for the problem of steady flow in a square cavity. They are in good agreement 
with the calculations made by Greenspan, Fortin, Teman and Peyret, Bourcier and Francois and Burgraff. Reynolds 
numbers up to 400 have been considered. 

It is concluded that the method is relatively simple and fast in the lower range of Reynolds numbers but the computing 
time increases very much when higher Reynolds numbers are reached. 

1. Introduction 

In order to gain more insight on the general problem of atmospheric diffusion a thorough 
understanding of the basic phenomena of laminar flow of a viscous incompressible fluid is 
required. These phenomena are described by the complete Navier-Stokes equations. Then, 
in  the first stage, our purpose has been to study the particularities of this problem. Later on 
successive refinements will include buoyant forces and the diffusion process in itself. 

The numerical solution of the Navier-Stokes equations has been tested with the classical 
problem of the square cavity flow. Several authors have dealt with it and nowadays various 
numerical techniques and results are available. In this sense our method is one of the closely 
related convergent methods used on the subject. The relative merit of them has still to be studied. 

The present work is divided as follows: 
In section 2 the general problem of viscous incompressible flow is formulated and the finite 

difference analogue approaching it is introduced in section 3. Section 4 is devoted to the for- 
mulation of the square cavity flow problem. In section 5 the numerical treatment and in section 
6 the prelimininary tests, are given. In section 7 the results obtained for different Reynolds 
numbers, time-steps and grid sizes are discussed and in section 8 the general conclusions are 
drawn. 

2. Formulation of the general problem 

Let us consider the following system representing the Navier-Stokes equations of a laminar 
viscous incompressible flow and the continuity equation (in two dimensions). 

~u v Au + ui + grad 0 (1.a) P =  
i=1 

div u = 0. (1.b) 

where u~ are the velocity components, p is the pressure, p is the density and v is the kinematic 
viscosity. 

Eliminating the variable p we have the so-called transport vorticity equation 

&o 2 &o ~u2 Oul 
c ~  - v,4co + y~ u~ = 0 co - (2) 

i= 1 ~ ' 0xl ax2 
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174 G. Marshall, E. van Spiegel 

Introducing the stream function % we have 

(~X2 - -  Ul ' .~ - -  U2 " 
6X 1 

System (2) becomes 
{ ~ ;  2 &o 

- -  V Aco ~- i:IZ Ui E = 0,  i ~-~- 1, 2 ,  (3.a) 

qo= - c o .  (3.b) 

We are seeking functions W = {co, (p} defined in the cylinder G = f2 x [0, T], where (2 is a bounded 
two-dimensional region, with boundary F, T >0, and satisfying (3) for : 

x =  {x 1, x2}e~,  O< t<  T ,  

together with 
q~(x,t)=0, xeF, t > 0 ,  

co(~, 0) : coo 0,), ~ a ,  
0e 
~ = 0(x),  x ~ r .  

Due to equation (3b) system (3) is not a regular system or in other words, it is not a system of 
Cauchy-Kovaleska type ([1], [3], [4] and [9]). 

Let us now associate to problem (3) the following perturbated problem of Cauchy- 
Kovaleska type 

v A % +  ~ u ~ - - = 0 .  (4) 
i=1  i ~Xi 

0% 
g -~-  - A % -  co~ =0, g" small parameter 

We are seeking functions W = {%, ~o~} defined in G and satisfying (4) for: 

x={xl ,  Xz}Sf2, 0<  t<  T ,  
together with 

%(x, t) = O, xeF, t>O, 
%(~, 0): co0(x), x~a, 
%(x, 0) = q%(x), xeO, %(x) arbitrary, 

8n = 9(x), xeF. 

For a fixed value ofg problem (4) has a unique solution. Furthermore it is conjectured that when 
g-,0, the solution of problem (4) tends to the solution of problem (3). 

3. The f'mite difference analogue 

For simplicity we shall write again system (4) in a more condensed form (dimensionless) 

OW A ~ W  OW 
Ot - 3xl + B ~x 2 + C AW + DW 

where (omitting subindexes) 

W =  A =  
' LO 0 

00] rl . 0] [0 B = C =  D =  
LO ' k 0 c 2 ' c 2 

(5) 

0]  ' and c z = l/g, R = UL/v. 
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The numerical treatment of the Navier-Stokes equations 175 

R is the Reynolds number, U is a reference velocity, L is a reference length and v is the kinematic 
viscosity. 

The finite difference analogue of (5) is written as follows" 

w n +  I - -  w n -- 
- A ' ( A + I + A - 1 ) + ~ x ( A + 2 + A _ 2 ) +  (A+IA-  + A + e A - 2 ) + D  W" 

At _ a 

+ O(At, Ax2),AXl = A x  e = Ax , (6) 

where as usual At and Ax indicate the time and space increments, W" is the discrete value 
approximating the solution at time t= n At, A +s and A-s are the forward and backward differ- 
ences, (s = 1, 2) and E is the identity operator. 

In the following we shall be concerned with the stability problem (more details on the whole 
problem can be found in [10]). 

It is possible to show that a linear stability analysis in the absence of inertia terms in system 
(6) gives the following conditions on At: 

At<- eAx2/4 and At< RAx2/4 (7a) 

These are the von Neumann necessary conditions for stability. 
It can be readily shown that these conditions are sufficient as well, since the amplification 

matrix G of the system above mentioned has a complete set of eigenvectors and the Gram 
determinant of the normalized eigenvectors of G are bounded away from zero, if condition (a) 
is satisfied (with the sole exception of R = e), (see [11]). 

It is concluded under the natural restriction of a Fourier type analysis that for highly viscous 
flows the stability is not perturbated by the presence of convective terms. 

It is fair to say that the condition At< eAx2/4 is draconian if we notice that e must be very 
small (in the limit e ~ 0  for evolutionary problems). In the case of steady state problems the value 
of e could be in principle arbitrary since we are not interested in the intermediate solutions but 
in the final one. 

Let us now consider the influence of diffusion and inertia terms; for that purpose we write 
down a simplified model of the system under study 

&o 2 0o~ 1 

i= 1 ~Xi R 

and the difference analogue approaching it 

Wj~,+ ~ - ( 1 - 4 q )  W j ~ - ( q - r z )  Wjn+ l , k - ( r l  + q) Wjn_a,k-(q-r2) VI/)~,k+ l - ( r 2  +q) Wj,~_ x =O (7b) 

where q=  At/R Ax a, r i = UiAt/2Ax, Ax 1 = Ax2 = Ax . 
It can be shown by a linear stability analysis that a necessary condition for stability (see [2] 

and [10]) gives 

or  
q<�88 and r < 4 q  where r=(IUII+IU2I)At /Ax 

At< RAxZ/4 and Ax<4 / { R( IUI [§  

In practice we have used the following conditions easily derived from the formers 

A t < R A x 2 / 4  and At<4/R( IUII§  2. 

Stability in the maximum norm can be easily established if in (7b) 1 - 4q => 0 and q - Ir~l _-> 0. If 
these conditions are valid all the coefficients in (7b) are positive and their sum equals 1, stability 
follows. 

These conditions can be written in the following form 

At< RAx2/4  and Ax< 2/(R[ Uil ) . 
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176 G. Marshall, E. van Spiegel 

It is interesting to observe that if 

Ax = 2/(RI U,I) 

it follows that 

At/Ax < 1/(21U~I), 

which is a hyperbolic type stability condition. 
Finally it is observed that a linear stability analysis in the absence of the term representing 

the physical viscosity shows that the difference analogue of the model equation is unconditional- 
ly unstable. 

4. Formulation of the square cavity flow problem 

We have chosen to test our method the problem of the steady flow of a viscous incompressible 
fluid in a square cavity ([5]). 

The problem is formulated as follows (see [6]): Let the points (0, 0) (1,0) (1, 1) and (0, 1) be 
denoted by A, B, C, D respectively. Let F be the square whose vertices are A, B, C, D and denote 
its interior by O (see fig. 1). 

y~x2 

v r- 4 c 

(0,1) (1,1) 

f l  

(o,o) (1,o) 

r3 

O=Q+F 

F= U F  i 
i=l  

v 
A r2 B x=- xl 

Figure 1 

Let us consider the two-dimensional steady state transport vorticity equation to be satisfied 
o n  (2 

2 ~fD 1 
uz~-- = -- Aco Aq~ = -co ,  i-- 1, 2,  (8) 

i= 1 OXi R ' 

where R is the Reynolds number : R = vD/v, reference velocity: v at the boundary DC, reference 
length: one side of the square, Ul=&p/Ox2, u2=-Oq~/Ox~, (p the stream function and co the 
vorticity. 

The boundary conditions to be satisfied on F are: 

- o for 
On 

&p (x) _ 0 for x EF 2 
an 

q~(x) - O~0(x) _ 0 for x~F 3 
dn 

~p(x)--O, O~o(x)  1 for x~F4 
On 

where n denotes the normal to the boundary. 
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The numerical treatment of the Navier-Stokes equations 177 

We are going to approach problem (8) by (4) defined in G and satisfying (4) for : 

x = {xl, x~}e~, 0<  t <  T ,  

together with the initial conditions: 

o)(x, O)= ~Oo(X ), xeQ, O)o(X ) arbitrary, 

~0 (x, 0) = (Po(X), xef2, ~Oo(X ) arbitrary. 

The boundary conditions coincide with those of problem (8), in general 

(x, t) = (x, O), t > o .  

We remark that we consider here the Solution of (4) when t~oo  and therefore e is arbitrary, 
rather than e--*0 which would be the case for a real evolutionary problem. 

5. Numerical treatment 

In order to integrate (8) by means of the difference analogue given by (6) in the square cavity 
defined in section 4 we introduce inside it a net that we have chosen squared for simplicity 
reasons; the distance step is dx. The number of intervals over one side is defined as M = 1lAx. 
The interior of the cavity contains ( M -  1) z nodes, each of them indexed l, m corresponding 
to the coordinates 

x=IAx=x~ y=m y=y,, / , m =  1,2 . . . .  M - 1 .  

In order to discretize the boundary conditions appears necessary to extend the domain by 
means of a supplementrary row of nodes in each side of the exterior of it (see fig. 2). 

..... t:i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i (O.M) 
(_I,M)! ~ D r4 -- c 

{ -1,m ) ~- . . . . . . .  

(--I,0) 

L . . . .  

(~,m), ,e-~,m 
! 

~,rn 

A B 
1 

(o,o) (M.O) 
L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i 

r2 

Figure 2 

( M , M }  

. . . . . .  -~ (M+I,M) 

,,~..x I 

For the approximation of the derivatives we t/se centered differences formulae, for example 

,,., = 2~x (q~' + ~' " - q~'- :' ") + 0 (Ax 2) 

(~2(19~ l (qo,+:,m--2(p,,.+q~,_l,.)+O(Ax2 ) " 
' " ' 

The same is done with the x2 axis. 
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The boundary conditions for ~0 are discretized by means of a centered formula for example on 
F, we have 

r r, 2A)d (q)- l 'm-q)l'm) q- O(Ax2) " 

The same for the other boundaries. 
In order to test the convergence of the difference analogue (6) when t--+ oo to the solution of 

the steady state problem defined in (8) the following criterium is used 

Max {Max W,", ,m + * - W~,q,,I } ~ 6 
oJ,~ l,m 

where a is a small parameter in general varying from 10 -4 to 10-7. 
In the following sections when speaking of precision we are referring to the criterium 

above-mentioned 

6. Preliminary tests 

Before attempting the solution of the square cavity flow problem defined in section 4 we have 
made some preliminary computations with a very simple problem in order to study the be- 
haviour of the numerical scheme chosen. The analytical solution of this problem is known. 

System (4) is now solved (in the absence of inertia terms) in the same domain defined in section 
4 subjected to the following boundary conditions 

q ~ ( x , t ) = x ( 1 - x )  2 for x~Fs, s = 2 , 4  

ca (x, t) = 0 for xe  Fs, s = 1,3 

The boundary values of the v orticity function are easily derived from the stream function with 
the aid of the second equati6n of system (4). 

The initial conditions are 

 0(x, o )=  0,  o(x, o) = o 

The analytical solution is 

( p ( x , t ) = x ( 1 - x )  2 for x e ~  

We now define the term E as 

E(*IO -") 

I I I 
100 200 300 

Figure 3. Behaviour of the term E when the grid is refined. 
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The numerical treatment of the Navier-Stokes equations 179 

E = Max Imax [ W~nal,,~ - Wnum,,..[ } 
~ , q  t l,m 

where Wanalt, m is the value of the analytical solution in the point l, m 
Wnumz.m is the value of the numerical solution in the point l, m 
W = {co, q)} is a vector valued function. 

With the help of the test problem just defined the following questions have been Studied: 
(a) Behaviour of the term E when n---,~ for fixed values of At and Ax. 
(b) Behaviour of the term E when At, Ax~O for fixed T = n .  At. 
(c) Behaviour of the term E when e~0 ,  under item (a). 
(d) Behaviour of the term E under item (a) when different initial conditions were used. 

In relation to point (a) Table I shows the values of E as a function of time for a grid size 
of 10x 10 with At/Ax2=0.25 and e = l .  

T A B L E  1 

n ~ cycles E 

10 1.25 
50 1.23 x 10-1 

100 1.00 x 10 -2 
150 8.15 x 10 -4  
200 6.63 x 10-  5 
250 5.39 x 10 . 6  
291 7.25 x 10 -7 

It is readily seen that the system converges to the steady state. 
In relation to item (b) the following series of runs were made for fixed T = nAt = 390.6 • 10- 3, 

At/Ax2= 0.25 (see Table 2). 

TABLE 2 

Run Grid size E ( ' 1 0  -4) 

1 8 • 8 5.30 
2 12 • 12 6.12 
3 15 • 15 6.52 
4 20 • 20 6.92 

The corresponding plotting is given in fig. (3). The behaviour of E as a function of the number of 
points (in space) although increasing, seems to reach an asymptotic value. 

As already has been observed the variation of e does not affect the final solution of a steady 
state problem but do affect the rate at which this solution is approached [3]. This can be shown 
in Table 3 in which for a fixed number of cycles, ratio At/Ax 2, grid size and the same initial 
conditions it was varied the value of e. Parameters: n ~ cycles = 300, At/Ax 2 =0.005, grid size: 
10 • 10. 

T A B L E  3 

e = 1/c 2 E 

1/2 9.08 x 10 -2 
1/5 3.71 • 10 -2 
t /10  8.43 • 10 3 
1/50 9"11 • 10 -7 
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180 G. Marshall, E. van Spiegel 

It is readily seen that the rate of convergence is improved with decreasing values of e (greater 
values of c2). In this case we have used the exact value of e). 

The role played by c a when it is increased may be seen as if we were using a greater time step 
in the second equation of system (6) i.e. A tacmaI = C 2"  A t.  

In order to study the influence of the arbitrary initial conditions in relation to the total time 
needed to reach the steady state under a given precision (6 = 10-6) several runs were made with 
different values of Wo. It was found that in principle the total time elapsed was not radically 
influenced by the initial conditions chosen. 

The major conclusions of this section are: 
(a) The term E tends asymptotically to zero when the number of cycles is increased for fixed 

At and Ax. i.e. the solution converges to the steady state. 
(b) The error between the analytic and the numerical solutions seems to reach an asymptotic 

value when the grid is refined (At, Ax  ~ 0). 
(c) The term e acts as a relaxation parameter and naturally the convergence is increased when 

epsilon decreases. The optimal value of e is determined by stability criterium. 
(d) The choice of the initial value is in principle arbitrary and do not affect appreciably the 

total computing time necessary to reach the steady state under a given precision 6. 

7. Numerical computations 

This section is devoted to the study of the solution of the square cavity flow problem defined in 
section 4, taking in account, in relation to the numerical method used, the preliminary consi- 
derations exposed in section 6. Further some details on the role of e are given and finally the 
plottings of the variables under study are presented. 

TABLE 4 

R Ax At N ~ cycles Precision (6) Total computin9 time (min) 

0 1/10 0.25 * Ax 2 204 10-6 1 ICL 
0 1/10 0.20. Ax z 253 10 6 1.25 ICL 
10 1/10 0.25. Ax 2 205 10 6 1 IC L 
10 1/10 0.20 * Ax 2 255 10 -6 1.25 ICL 
50 1/10 0.25 * Ax 2 221 10 .6 1.1 ICL 
50 1/10 0.20 * Ax 2 270 10- 6 1.35 ICL 
100 1/10 0.025 * Ax 243 10 .6 1.2 ICL 
100 1/10 0.020 * Ax 272 10 .6 1.35 ICL 
100 1/10 0.015 * Ax 359 10- 6 1.80 ICL 
200 1/10 0.010 * Ax 459 10-6 2.3 ICL 
400 1/20 0.0025 * Ax 3000 3 x 10- 5 47 ICL 
400 1/20 0.0025 * Ax 5000 1.3 • 10 -6 18 IBM 
400 1/40 0.0025 * Ax 6000 1.5 x 10-s 97 IBM 

The square cavity flow problem has been solved for different values of Reynolds number, grid 
size and precision. The calculations were carried out on the I.C.L. 1905 and afterwards on the 
I.B.M. 360/65 from the Delft University of Technology. The language used was Algol. 

The most representative results are shown in Table 4. The same initial conditions were used 
for all the cases, i.e. 

(o(x, 0 ) = 0  for x~f2 

co(x, 0 ) = 0  for x~(2 

The computations were ended when a preselected precision was reached or when the total 
computing time was overpassed. 
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We remind that R = 0 indicates the absence of inertia terms. 
To study the influence of the parameter e for this specific problem we have made a series of 

runs with fixed values of the following parameters : grid size (10 x 10), At/Ax 2 = 0.005, Reynolds 
number = 10, number of cycles : 300 and the same initial conditions in all the runs. In Table 5 
are shown the results. 

T A B L E  5 

= 1/c 2 E 

1/2 1 7 . 8 •  10 3 

1/5 12 x 10 . 3  

1/10 9.05 • 10 -3  

1/50 7.31 • 10 -3  

It is seen that the rate of convergence is improved with greater values of c 2. 
We may now drop the following general conclusions. 

(a) The convergence to the steady state is a function of the total time elapsed i.e. greater time 
steps obviously increases the convergence 

(b) The maximum allowable time step is a function of the Reynolds number with the obvious 
consequence that the total computing time is also a function of the Reynolds number 

(c) In the higher range of Reynolds number (> 100) the maximum time step is inversely propor- 
tional to the Reynolds number 

(d) The rate of convergence to the steady state is improved with decreasing values of the param- 
eter e which, in turn, brings a restriction on the time step. 

(e) In the first cycles of the computation the convergence is very fast but the last figures for 
higher precision are hard to obtain. 

In order to compare our results with those obtained in [4], [5], [6], [7] and [8] we have made 
some plottings in which is shown the development of the flow with different Reynolds numbers. 

The first pair of figures (4 and 5) shows the equivorticity lines (Fig. 4) and the streamlines 
(Fig. 5) for R = 0 in a grid size of 32 • 32 with a precision of 10- 6. 

The next two figures (6 and 7) are the corresponding tridimensional plottings of the preceding 
experiments. Fig. 6 represents the streamfunction and fig. 7 the vorticity function. (Both figures 
are turned 90 degrees around the z-axis in relation to fig. 4). 

I 

F i g u r e  4. E q u i v o r t i c i t y  l ines for  R = 0. 

1 = - 1.000 

2 = 0 .000 
3 = 1.000 

4 = 3.000 

5 = 5~000 
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f 

Figure 5. Streamlines for R = 0. 

/ 
1 = 0 .000 

2=0.010 
3 = 0.040 
4 = 0.070 
5 = 0.090 

G. Marshall, E. van Spiegel 

STREAM F U N C T I O N  (R = 0) 

Figure 6 

VORTICITY F U N C T I O N  R=O) 

Figure 7 
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F i g u r e  8. E q u i v o r t i c i t y  l ines for  R = 50. 

1 = - 1 . 0 0 0  

2 = 0 .000 

3 = 1.000 

4 = 3.000 

5 = 5.000 

f 

tt 
F i g a r e  9. S t r eaml ines  for  R = 50. 

1 = 0 . 0 0 0  

2 = 0 . 0 1 0  

3 = 0 .040 
4 = 0 . 0 7 0  

5 = 0 . 0 9 0  

The next pair of figures (8 and 9) shows the patterns of the flow for R = 50 in a grid size of 
40 x 40 with a precision of 10 -6. The corresponding tridimensional plottings are shown in 
figures 10 and 11. Fig. 12, 13, 14 and 15 show the same for R =400 in a grid size of 20 • 20 with 
a precision of 1.3 • 10 -6. 

Figures 16, 17, 18 and 19 show the contour lines and perspective plotting of the vorticity and 
stream function. The parameters are: R = 400, grid size 40 • 40 and precision equal to 1.5 x 10- s. 

It is observed that the streamlines are quite similar for different Reynolds numbers with the 
exception of a slight change in the position of the center of the vortex. On the contrary the vorti- 
city is more influenced by increasing Reynolds numbers loosing the symmetric pattern shown 
at R = 0 and suggesting that at very high Reynolds numbers will consist of a core of nearly 
uniform vorticity [-51. Two secondary eddy formations are observed at the bottom of the 
square cavity. 

These rather general considerations on the results obtained as compared with those of the 
authors mentioned above show a good agreement specially in the lower range of Reynolds 
numbers. 

For higher Reynolds numbers the flow develops very steep gradients near the walls (di- 
minishing thickness of the boundary layer, [5]), neither this phenomena nor the formation of 
secondary eddies can be correctly described with coarse mesh sizes since in those cases a great 
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(R = 50) 

Figure 10 

VORTICITY F U N C T I O N  (R = 50) 

Figure 11 

Figure 12. Equivorticity lines for R = 400. 
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Figure 13. Streamlines for R = 400. 

1 =0.000 
2= 0.010 
3= 0.040 
4= 0.070 
5= 0.090 

STREAM FUNCTION (R =400) 

Figure 14 

VORTICITY FUNCTION (R = 400) 

Figure 15 
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/ 

F i g u r e  16. E q u i v o r t i c i t y  l ines for  R = 400. 

1 = - 1.000 
2 = 0.000 

3 = 1.000 

4 = 3.000 

5 = 5.000 

G. Marshall, E. van Spiegel 

f 

l 
F i g u r e  17. S t r eaml ines  for  R = 400. 

1 = 0.000 
2 = 0 . 0 1 0  
3 = 0.040 

4 = 0 . 0 7 0  

5 = 0.090 

S T R E A M  F U N C T I O N  (R = 400) 

....................... ~ - ~ y  

F i g u r e  18 
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VORTICITY FUNCTION (R = 400) 

187 

Figure 19 

truncation error is involved. The strong oscillations observed in figure 15 can be explained by 
the coarseness of the grid used (20 x 20). These type of oscillations tend to disappear when the 
grid is refined (fig. 19, 40 x 40 grid size). But it is possible to observe in fig. 19 a small amplitude 
oscillation superimposed to the solution. We believe that this phenomena is caused by the 
numerical procedure used in the approximation of the convective terms (centered). 

This effect might be diminished by the use of the so called "upstream" difference approxima- 
tion. UnfortunatelY this method introduces a numerical diffusion which tends to overshadow 
the physical viscosity rendering under certain conditions meaningless calculations. 

8. Conclusions 

The method presented here is simple and relatively fast requiring a few preliminary tests for 
obtaining the optimum time step for a given accuracy and precision. 

On the contrary the computing time is a direct function of the Reynolds number and drastical- 
ly increases for Reynolds greater than 400. Therefore we are considering, for this range of 
Reynolds numbers, the possibility of using implicit schemes of the splitting type and a different 
treatment of the Poisson type equation. 
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